欢迎访问长春工业大学信息门户,今天是

数学与统计学院特邀西南财经大学林华珍做学术报告

时间:2022-05-19  点击数:

报告题目:Centre-augmented L2-type regularization for subgroup learning

报告时间:2022520下午 15 00

会议链接:https://meeting.tencent.com/dm/l6nbhVrMMpKL

会议 ID813-604-236

主办单位:科研处/数学与统计学院

主讲人:林华珍

林华珍简介: 教授,博士生导师,西南财经大学统计研究中心主任, 国务院政府特殊津贴专家,教育部新世纪优秀人才,第十一批四川省学术和技术带头人,第十批成都市有突出贡献的优秀专家。主要研究方向为转换模型、非参数方法、生存数据分析、函数型数据分析、潜变量分析、ROC方法、偏态数据分析、捕获-再捕获数据分析。已经发表科研论文50余篇,研究成果发表在包括AoSJASAJoEJRSSBBiometrikaBiometrcs等国际统计学和计量经济学顶级期刊上论文若干。先后担任国际统计学期刊BiometricsScandinavian Journal of StatisticsJournal of Business & Economic StatisticsCanadian Journal of StatisticsStatistics and Its InterfaceStatistical Theory and Related FieldsAssociate Editor以及国内核心学术期刊《应用概率统计》、《系统科学与数学》、《数理统计与管理》编委。先后六次主持国家自然科学基金项目。林华珍教授是国际IMS-ChinaIBS-CHINAICSA-China委员,第九届全国工业统计学教学研究会副会长,中国现场统计研究会环境与资源分会、高维数据分析分会、生物医学统计学会、生存分析分会等多个分会的副理事长。

摘要:The existing methods for subgroup analysis can be roughly divided into two categories: finite mixture models (FMM) and regularization methods with an L1 -type penalty. In this paper, by introducing the group centres and L2 -type penalty in the loss function, we propose a novel centre-augmented regularization (CAR) method; this method can be regarded as a unification of the regularization method and FMM and hence exhibits higher efficiency and robustness and simpler computations than the existing methods. Particularly, its computational complexity is reduced from the $O(n^2)$ of the conventional pairwise-penalty method to only $O(nK)$, where n is the sample size and K is the number of subgroups. The asymptotic normality of CAR is established, and the convergence of the algorithm is proven. CAR is applied to a dataset from a multicenter clinical trial: Buprenorphine in the Treatment of Opiate Dependence; a larger $R^2$ is produced and three additional significant variables are identified compared to those of the existing methods.

 

关闭

信息化建设工作办公室(信息化技术中心) 信息技术部